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1 Introduction

In recent years, research scientists have been using computer machine learning programs

to analyze missense variants in genetic data. Missense variants are a type of genetic variation

where a single nucleotide change in the DNA sequence results in a change in the amino acid

sequence of the protein that is produced. This can affect the protein’s function and potentially

lead to disease. Recently, science researchers at Columbia University have created a machine

learning program called gMVP which is much more efficient than other computer programs

or machine learning programs that analyze missense variants. (Zhang and et al ((2022))).

gMVP is a supervised machine learning method for predicting functionally damaging missense

variants. The functional consequence of missense variants depends on both the type of amino

acid substitution and its protein context. gMVP uses a graph attention neural network to

learn the representation of protein sequence and structure context and context- dependent

impact of amino acid substitutions on protein function. The currently trained gMVP model

that is highly efficient was trained on the following data (called ”Original Data”):1) Collected

likely pathogenic and benign missense variants from curated databases (HGMD, ClinVar, and

UniProt) as training positives and negatives, respectively, excluding the variants with conflicting

evidence in the databases: 2) to balance positive and negative sets, randomly selected rare

missense variants observed in human population sequencing data DiscovEHR as additional

negatives for training. (Zhang and et al ((2022))). Theoretically, other missense variants-related

data that trains gMVP could make the gMVP model even more efficient.

As the gMVP paper itself points out (see Zhang and et al ((2022)) at 15), recently, a machine

learning language model called Transformer has been applied on protein sequences and multi-

sequence alignments (MSAs) to improve the performance of coevolution strength estimation and

protein residue-residue contacts prediction. (see Rao and et al. ((2020)) Rao and et al. ((2021)))

Created in 2017, Transformer is a type of neural network architecture that was introduced in

2017 by a team of researchers at Google. (see Vaswani and et al. ((2017))) It is a type of

deep learning model that is capable of performing a wide range of natural language processing

tasks, such as language translation, text summarization, and question answering. Unlike many

other models, which process language one word at a time, the Transformer uses a technique

called self-attention, which allows it to consider the entire input sequence simultaneously. This

makes it much faster and more efficient than other models, and it has been shown to be very

effective in many natural language processing tasks. The way scientists used Transformer for

MSAs is they had the model interleave rows and columns attentions across the input sequences

and is trained with a variant of the masked language modeling objective across many protein
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families. This program called MSA Transformer surpasses current state-of-the-art unsupervised

structure learning methods by a wide margin, with far greater parameter efficiency than prior

state-of-the-art protein language models. (see Rao and et al. ((2020)) Rao and et al. ((2021)))

Using the output from the MSA Transformer to train the gMVP model could make the

model be even more efficient than the Original Data that trained the gMVP model.(see Zhang

and et al ((2022)) at 15) My research involved changing the gMVP machine learning program, by

editing the program’s Python language and adding more programming language so that gMVP

could be trained by MSA Transformer data. I then compared the efficiency of the gMVP model

trained with the MSA Transformer data with the gMVP model trained by the Original Data to

see which model is more effective. My research shows that the MSA Transfer data makes the

gMVP Model slightly more effective.

2 Background

a. Missense Varients

Missense variants are a type of genetic variation where a single nucleotide change in the

DNA sequence results in a change in the amino acid sequence of the protein that is produced.

This can affect the protein’s function and potentially lead to disease. For example, a missense

variant in the gene for a specific enzyme may result in the enzyme being less effective or not

functioning at all, which can disrupt the biological processes that the enzyme is involved in and

lead to a disease state. Missense variants can potentially lead to a wide range of diseases and

conditions, depending on the specific protein that is affected and the severity of the change in

amino acid sequence. Some examples of diseases and conditions that can be caused by missense

variants include cystic fibrosis, sickle cell anemia, and certain types of cancer. (see Boettcher

et al. ((2019)), Huang and et al ((2018)), Jin and et al. ((2017)), Satterstrom and et al., Kaplanis

and et al. ((2019))) In some cases, missense variants may only have a minor effect on protein

function and may not cause any noticeable health problems. In other cases, missense variants

can be more severe and can lead to serious health problems. (see Boettcher et al. ((2019)),

Huang and et al ((2018)), Jin and et al. ((2017)), Satterstrom and et al., Kaplanis and et al.

((2019)))

Some examples of conditions that can be caused by missense variants include:

• Cystic fibrosis: A missense variant in the gene that encodes the cystic fibrosis trans-
membrane conductance regulator (CFTR) protein can lead to the development of cystic
fibrosis, a genetic disorder that affects the respiratory, digestive, and reproductive systems.
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• Hemochromatosis: A missense variant in the HFE gene, which is involved in the regulation
of iron metabolism, can cause hemochromatosis, a condition in which the body absorbs
and stores too much iron.

• Sickle cell anemia: A missense variant in the HBB gene, which encodes the beta chain of
hemoglobin, can result in the production of abnormal hemoglobin, leading to sickle cell
anemia, a blood disorder in which red blood cells become stiff and shaped like crescents.

• Alzheimer’s disease: Missense variants in the APP, PSEN1, and PSEN2 genes, which are
involved in the production of amyloid beta, a protein that forms plaques in the brain, have
been linked to an increased risk of developing Alzheimer’s disease, a neurodegenerative
disorder that affects memory and cognitive function.

(Boettcher et al. ((2019)), Huang and et al ((2018)), Jin and et al. ((2017)) Satterstrom and

et al., Kaplanis and et al. ((2019))). These are just a few examples of the many different diseases

and conditions that can be caused by missense variants.

b. Computer Programs and Machine Learning For DNA and Genetic Data

Research.

In recent years, as computer machine learning and other computer programs have become

popular amount science researchers, DNA and Genetic researchers have used various types of

computer programs and machine learning for their research.

For example, since 2013, researchers have used Polyphen2. Polyphen2 is a computational

tool used to predict the effects of mutations on proteins. It uses a combination of algorithms and

manually curated data to predict whether a particular mutation is likely to have a damaging

effect on the structure and function of a protein. Polyphen2 is often used in the field of genetics

to help interpret the results of genetic tests, and to identify potential disease-causing mutations.

It is also used in the study of evolutionary biology, to help understand how changes in protein

sequences can lead to the development of new traits and functions. (see Adzhubei and et al.

((2013))).

Similarly, SIFT (Sorting Intolerant From Tolerant) has also been used since 2013. SIFT is a

computational tool used to predict the functional effects of amino acid substitutions on proteins.

It uses a combination of evolutionary conservation and structural information to determine

whether a given amino acid substitution is likely to have a damaging effect on protein function.

(See Carter and et al. ((2013))).

Since 2014, CADD has been used by researchers. CADD (Combined Annotation-Dependent

Depletion) is a computational tool used to predict the functional effects of genetic variants on

proteins. It uses a combination of machine learning algorithms and manually curated data to

score the likely impact of a given variant on protein function. (see Kircher and et al. ((2014))).

Since 2016, REVEL has been used. Revel is a statistical method used in DNA research to
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assess the accuracy of predicted amino acid sequences. It uses a probabilistic model to evaluate

the compatibility of a given sequence with a multiple sequence alignment, taking into account

the evolutionary relationships among the sequences in the alignment. (See Ioannidis and et al.

((2016))).

Also since 2016, researchers have employed M-CAP. M-CAP uses a gradient boosting tree

classifier17, which learns a function of the input features as a linear combination of decision

trees, each derived iteratively to correct previously misclassified elements. The model hyper-

parameters were optimized with a systematic grid search (Online Methods). The authors of

M-CAP argued in their paper that M-CAP did a better job analyzing.” These widely used meth-

ods misclassify 26 to 38 percent of known pathogenic mutations, which could lead to missed

diagnoses if the classifiers are trusted as definitive in a clinical setting. We developed M-CAP, a

clinical pathogenicity classifier that outperforms existing methods at all thresholds and correctly

dismisses 60 percent of rare, missense variants of uncertain significance in a typical genome at

95 precent sensitivity.” See Jagadeesh and et al. ((2016))).

And there are several other tools that have even more recently been developed to ana-

lyze DNA and Genetics concerning missense variants, such as: Eigen (Ionita-Laza and et al.

((2016))), MVP (Qi and et al. ((2021))), PrimateAI (Sundaram ((2018))), MPC (Samocha and

et al. ((2017))), and CCRs (Havrilla and et al. ((2019))).

These methods differ in several aspects, including the prediction features, how the features

are represented in the model, the training data sets and how the model is trained. Sequence

conservation or local protein structural properties are the main prediction features for early

computational methods such as GERP20 and PolyPhen2. MPC and CCRs estimate sub-genic

coding constraints from large human population sequencing data which provide additional in-

formation not captured by previous methods. PrimateAI learns protein context from sequences

and local structural properties using deep representation learning. A number of studies have

reported evidence that functionally damaging missense variants are clustered in 3-dimensional

protein structures21-23.

c. gMVP Machine Learning.

Recently, in 2021, science researchers at Columbia University created a new machine learn-

ing program to better analyze missense variants.Zhang and et al ((2022)) This program, called

gMVP (short for ”generalized Minimal Variant Pools”), is a computational tool used in DNA

research to identify common sequence motifs among a set of related sequences. It uses a proba-

bilistic model to identify the most likely set of motifs that are shared among the sequences, and

can be used to help identify functional elements within DNA sequences. gMVP can be useful
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in a variety of DNA research applications, including the identification of regulatory elements

and the study of evolutionary relationships among different DNA sequences. Zhang and et al

((2022)). gMVP works by analyzing the data in a multi-dimensional graph. gMVP does this

because some studies have reported evidence that functionally damaging missense variants are

clustered in 3-dimensional protein structures. (see Iqbal and et al. ((2020)), Hicks and et al.

((2019)), Sively and et al. ((2018))).

d. New Data, MSA Transformer, To Train the gMVP Model

As the gMVP paper itself points out (see Zhang and et al ((2022))), recently, a machine

learning language model called Transformer has been applied on protein sequences and multi-

sequence alignments (MSAs) to improve the performance of coevolution strength estimation

and protein residue-residue contacts prediction. (see Rao and et al. ((2020)), Rives and et al.

((2021)), Rao and et al. ((2021))) Created in 2017, Transformer is a type of neural network

architecture that was introduced in 2017 by a team of researchers at Google.(Vaswani and et al.

((2017))). It is a type of deep learning model that is capable of performing a wide range of

natural language processing tasks, such as language translation, text summarization, and ques-

tion answering. Unlike many other models, which process language one word at a time, the

Transformer uses a technique called self-attention, which allows it to consider the entire input

sequence simultaneously. This makes it much faster and more efficient than other models, and it

has been shown to be very effective in many natural language processing tasks. The way scien-

tists used Transformer for MSAs is they had the model interleave rows and columns attentions

across the input sequences and is trained with a variant of the masked language modeling ob-

jective across many protein families. This program called MSA Transformer surpasses current

state-of-the-art unsupervised structure learning methods by a wide margin, with far greater

parameter efficiency than prior state-of-the-art protein language models. (see Rao and et al.

((2020)), Rives and et al. ((2021)), Rao and et al. ((2021)))

Theoretically, using the output from the MSA Transformer to train the gMVP model could

make the model be even more efficient that the original data that trained the gMVP model.

3 Methodology And Data

For this research, I was given access to the gMVP program and also I was given access to

the Original Data that the gMVP model was trained on and also new data, which is the output

from the MSA Transformer program.

The way gMVP works as a supervised machine learning method is that it predicts func-

tionally damaging missense variants. The consequence of missense variants is based on the
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type of amino acid substitution and its protein context. Significantly, gMVP uses a graph at-

tention neural network to learn representation of protein sequence and structure context and

context-dependent impact of amino acid substitutions on protein function. See Zhang and et al

((2022))

Credit: diagram is from Zhang and et al ((2022))

The above diagram illustrates how gMVP works. A graph is created to represent a variant

and its protein context defined as 128 amino acids that flank the amino acid of interest. The

amino acid of interest is the node labeled ”A” and the flanking amino acids the surrounding

nodes labeled ”N”. The context nodes are connected with the center node but not each other.

The edge feature is coevolution strength. Zhang and et al ((2022)) gMVP uses three 1-depth

dense layers to encode the input features to latent representation vectors and used a multi-head

attention layer to learn a context vector ”c”. It then uses a recurrent neural layer connected with

a softmax layer to generate a prediction score from the context vector ”c” and the representation

vector ”h” of variant. Zhang and et al ((2022))

The Original Data that was used to train the gMVP model came from three curated

databases: HGMD (see Stenson and et al ((2003))), ClinVar (see Landrum ((2014))), and

UniProt (see Mottaz ((2010))).
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The positive training set in the Original training data used 22,607 variants from the ClinVar

database (see Landrum ((2014))) under the Pathogenic and Likely-Pathogenic categories with

review status of at least one star, 48,125 variants from the HGMD data based (see Stenson and

et al ((2003))) under the disease mutation (DM) category, and 20,481 variants from UniProt

(see Mottaz ((2010))) labeled as Disease-Causing. The negative training sets in the Original

trianing data used 41,185 variants from ClinVar (see Landrum ((2014))) under the Benign and

Likely-Benign categories, 33,387 variants from SwissVar at the UniProt database (see Mottaz

((2010))) labeled as Polymorphism. Zhang and et al ((2022)) at 16. Also, for estimating

evolutional conservation, gMVP used data from two sources: (1) the homologous of the protein

of interest against SwissProt database (Bateman and et al. ((2019))) with 3 iterations of search

and then the built multiple sequence alignments (MSAs) with HHblits suite.(Remmert and

et al. ((2012))) (2) the MSAs of 192 species downloaded from Ensemble website for each human

protein sequence (Ensemble ((2022)).

3.1 Running the original gMVP Model

I set up and ran the gMVP program with the Original Data on a Linux workstation with 1

NVIDIA Titan RTX GPU. I had to create a new Anaconda environment (Anaconda ((2022)),

install Python and the main machine learning program, PyTorch and various Python libri-

aries.(see Pytorch ((2022))). To go through 50 epochs, the program took an average of 3 to 4

minutes for each epoch. So altogether, it took about 175 minutes to go through all the data.

The gMVP Model’s original training was tested to result in ”functional readout data from

deep mutational scan assays of four well-known disease risk genes, TP53 (see Kotler and et al.

((2018))), PTEN (see Mighll ((2018)), BRCA1 (see Findlay and et al ((2018)), and MSH2 (see

Jia and et al. ((2021)), as benchmark data.” (Zhang and et al ((2022)) at 7).

TP53 is the name of a gene that provides instructions for making a protein called tumor

protein p53. This protein is involved in many processes in the body, including cell growth and

division, DNA repair, and programmed cell death (apoptosis). Mutations in the TP53 gene can

lead to the development of cancer and other health problems. For example, TP53 mutations are

commonly found in a variety of cancers, including leukemias, lymphomas, and solid tumors such

as breast, ovarian, and lung cancer. TP53 mutations can also cause Li-Fraumeni syndrome, a

rare inherited disorder that increases the risk of developing several types of cancer.

PTEN (phosphatase and tensin homolog) is a protein that acts as a tumor suppressor

by regulating the cell cycle and promoting apoptosis (programmed cell death). PTEN is com-

monly mutated or deleted in a variety of human cancers, including breast, prostate, and brain
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cancer. Dysregulation of PTEN signaling has been linked to the development and progression

of cancer, and PTEN-deficient tumors tend to be more aggressive and resistant to treatment.

PTEN mutations are also associated with certain inherited cancer syndromes, such as Cowden

syndrome and Bannayan-Riley-Ruvalcaba syndrome. In these syndromes, individuals have an

increased risk of developing multiple types of cancer due to inherited PTEN mutations.

BRCA1 (breast cancer 1) is a protein that plays a critical role in DNA repair and the

maintenance of genomic stability. BRCA1 is a tumor suppressor, meaning that it helps to

prevent the development of cancer by regulating cell division and DNA repair. Mutations in

the BRCA1 gene are associated with an increased risk of breast, ovarian, and several other types

of cancer. BRCA1 mutations are particularly common in individuals with a family history of

breast or ovarian cancer, and are often inherited in an autosomal dominant pattern. Women

with BRCA1 mutations have a lifetime risk of breast cancer that can be as high as 80

MSH2 (mutS homolog 2) is a protein that is involved in DNA mismatch repair (MMR),

a process that helps to correct errors that occur during DNA replication. MSH2 plays a critical

role in maintaining the integrity of the genome by recognizing and repairing mismatched bases

in DNA. Mutations in the MSH2 gene are associated with an increased risk of cancer, partic-

ularly colorectal cancer. Individuals with inherited MSH2 mutations have an increased risk of

developing colorectal cancer, as well as other types of cancer, such as endometrial, ovarian, and

stomach cancer. MSH2 mutations are also associated with an inherited cancer syndrome called

hereditary nonpolyposis colorectal cancer (HNPCC), which is characterized by a predisposition

to early onset colorectal cancer and a high risk of developing other types of cancer.

gMVP, as part of the model training, plots out two types of curves for each of the four

diseases: AUROC curves and precision-recall curves.

AUC-ROC (area under the receiver operating characteristic curve) is a metric used

to evaluate the performance of a binary classification model. The ROC curve is a graphical

representation of the true positive rate and the false positive rate at different classification

thresholds. The true positive rate (TPR) is the proportion of positive cases that are correctly

identified by the model, also known as the sensitivity or recall. The false positive rate (FPR)

is the proportion of negative cases that are incorrectly identified as positive by the model.

The AUC-ROC is the area under the ROC curve, which is a measure of the model’s ability

to distinguish between positive and negative cases. A model with a high AUC-ROC value has

a high true positive rate and a low false positive rate, indicating that it is able to accurately

identify positive cases while minimizing the number of false positives. The ROC curve is a useful

tool for comparing the performance of different models, as it provides a visual representation of
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the trade-off between the true positive rate and the false positive rate. A model with a higher

AUC-ROC value is generally considered to be a better model than one with a lower AUC-ROC

value.

Precision-recall curves are a graphical representation of the trade-off between the preci-

sion and recall of a binary classification model. Precision is the proportion of positive predictions

that are actually positive, while recall is the proportion of actual positive cases that are correctly

identified by the model.

A precision-recall curve plots the precision on the y-axis and the recall on the x-axis at

different classification thresholds. The curve is generated by varying the classification threshold

and calculating the corresponding precision and recall values.

Precision-recall curves are useful when the goal is to identify all positive cases, even if it

leads to a higher number of false positives. For example, in a medical setting, it may be more

important to identify all cases of a particular disease, even if it leads to some false positives,

rather than miss some cases and have a higher precision but lower recall.

The area under the precision-recall curve (AUPRC) is a measure of the model’s performance,

with a higher value indicating a better model. The AUPRC is often used when the positive

class is rare or when the cost of false negatives is high.

These are the AUROC plot outcomes from the model trained with the Original Data:

Results for TP53

For TP53, my run of the Original Data on the gMVP model, resulted in a 0.87 ROC score

and 0.71 Precision-Recall score.

Results for PTEN
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For PTEN, my run of the Original Data on the gMVP model, resulted in a 0.87 ROC score

and 0.55 Precision-Recall score.

Results for BRCA1

For BRA1, my run of the Original Data on the gMVP model, resulted in a 0.83 ROC score

and 0.71 Precision-Recall score.

Results for MSH2

For MSH2, my run of the Original Data on the gMVP model, resulted in a 0.86 ROC score

and 0.33 Precision-Recall score.
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3.2 The MSA Transformer Data

The MSA Transformer language model can be used to extract embeddings from multi-

sequence alignments (MSA). As explained by Rao et al:

We introduce the MSA Transformer, a model operating on sets of aligned sequences.
The input to the model is a multiple sequence alignment. The architecture inter-
leaves attention across the rows and columns of the alignment as in axial attention
(Ho et al., 2019). We propose a variant of axial attention which shares a single
attention map across the rows. The model is trained using the masked language
modeling objective. Self supervision is performed by training the model to recon-
struct a corrupted MSA.

Rao and et al. ((2021)) MSA Transformer model the contact pattern among the proteins some-

thing called ”row attention”: ”Information about the contact pattern emerges directly in the

tied row attention maps.” Rao and et al. ((2021)). This diagram explains how the model finds

the pattern of the protein row attention.

Credit: diagram is from Rao and et al. ((2021))

MSA Transformer, in addition to ”row attention”, then creates the contact data: ”[W]e fit

a sparse logistic regression to the model’s row attention maps to identify heads that correspond

with contacts.” Rao and et al. ((2021)). Thus, the MSA Transformer creates two types of

relevant data: contacts.pt and row_attention.pt

3.3 Editing the gMVP Model To Work with MSA Tranfomer data

To get MSA Transformer data to work with the gMSV Program, I had to create code

language in Python to feed the data into the program. Below is the code:
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search_path2 = self.feature2_dir

contacts_location = search_path2 + file + ".contacts.pt"

row_attention_locaton = search_path2 + file + ".row_attentions.pt"

if os.path.exists(contacts_location):

contacts_file = torch.load(contacts_location)

contacts_file = contacts_file[:, 0, :]

row_attention = torch.load(row_attention_locaton)

row_look = 4

row_attention = row_attention[torch.arange(1, row_attention.shape[0] + 1) != row_look, ...]

row_attention = row_attention[0, :, :, 0, :].reshape(-1, row_attention.shape[-1])

shape_no = row_attention.shape[1]

row_attention = row_attention[:, 1:shape_no]

combined_data = torch.cat((contacts_file, row_attention), 0)

final_torch = torch.transpose(combined_data, 0, 1)

what_file = "yes"

return_data = final_torch

feature_len2 = return_data.shape[0]

final_feature2 = np.zeros([WIDTH * 2 + 1, return_data.shape[1]])

first_one = return_data[var_start:var_end]

second_one = return_data[start:end]

return_data = return_data.detach().numpy()

final_feature2[var_start:var_end] = return_data[start:end]

second_data = final_feature2

else:

final_torch = torch.zeros(129, 235)

what_file = "no"

second_data = final_torch

As the MSA Transformer data was in two types of files: contacts.pt and row_attention.pt,

the code above first uses the unique name of the Original Data file which will have the same

unique name as the related contacts.pt and row_attention.pt files. In the above code, the

term ”file” is the variable for the unique name. Because not all the MSA Transformer data

matched the data Original Data one for one, my code using an ”if” statement first checks to see

if there are files that match the name of the Original Data file. If the if-statement confirms those

related files exists, i.e. contacts.pt and row_attention.pt, the code then has to reshape the

tensors to fit training the model.The contacts_file] shape was a three dimensional matrix:

1, 429, 429. My new code changed that shape to two dimensions: 429, 429. The original shape

of the row_attention file was a 5 dimensional matrix:[1, 12, 12, 430, 430]. That had to be

changed to two dimensions of reshaped row_attention file to size [235, 129]. Then the code

concatenates the two tensors that have the same two dimensional shape. Because I am using

PyTorch, the machine learning language that deals with tensors, I am using PyTorch built-in
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PyTorch function called ”cat” to concatenate the two tensors that have the same shape. Then

to match the shape of the Original Data, the program transposes the two dimensions so they

are [129, 235]. Finally, the code takes the data and then just uses 64 side of of where the varient

is in the data. That is why the first part of the shape is 129. 129 is 64 on one side of the variant

plus 64 on the other side of the variant and 1 for the variant.

The ”else” statement also plays a significant role in this program. As some of the Original

Data files do not have related contacts.pt and row_attention.pt, the ”else” statement cre-

ates a tensor matching the same shape of the final tensor in ”if” but filled with zeros. This also

has the shape: [129, 235]

Depending on if ”If” or ”else” is used, the "second_data" is what goes into the model.

Then into the model part of the gMVP program, this "second_data" is fed and becomes

the new ”pairwise” in the model.(The pairwise is distance between input vectors, or between

columns of input matrices.) That data in the model is first renamed ”feature2”.

pairwise2 = feature2.type(torch.float32)

alt_aa = nn.functional.one_hot(alt_aa.type(torch.int64),20)

ref_aa = nn.functional.one_hot(ref_aa.type(torch.int64),20)

center = torch.cat([

ref_aa, alt_aa, evol[:, center_pos], feature[:, center_pos, 1:21],

feature[:, center_pos, 221:231]

],

dim=-1).type(torch.float32)

center = self.variant_encoder(center)

query = center[:, None]

context = self.neighbor_encoder(context)

key, value = context, context

if pairwise2 is not None:

pairwise2 = self.pairwise2_encoder(pairwise2)

pairwise = pairwise2

context = self.mha((query, key, value), pairwise=pairwise, mask=mask)

context = self.dense_dropout(context)

x = self.gru(center, context)

x = self.dropout(x)

In addition to the above code, I had to go through all the different code files and change

a lot of the code for the feature2 data to get through and work with the model code. This is

what the gMVP code files look like which is somewhat complex:
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Screenshot of gMVP code files taken by me

4 Results

When, gMVP model is run on the new data to train it, it again takes 3 to 5 minutes for

each of the 50 epochs of training. After it runs, these are the plot outcomes from the new model

trained with MSA Transformer: Results for TP53

For TP53, my run of the MSA Transformer Data to train the gMVP model, resulted in a

0.9 ROC score and 0.76 Precision-Recall score.

Results for PTEN
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For PTEN, my run of the MSA Transformer Data to train the gMVP model, resulted in a

0.88 ROC score and 0.52 Precision-Recall score.

Results for BRCA1

For BRCA1, my run of the MSA Transformer Data to train the gMVP model, resulted in a

0.83 ROC score and 0.72 Precision-Recall score.

Results for MSH2

For MSH2, my run of the MSA Transformer Data to train the gMVP model, resulted in a

0.87 ROC score and 0.36 Precision-Recall score.
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5 Discussion and Conclusion

Here is a chart comparing the ROC and PR results of the Original Data training the model

and the MSA Transformer data training the model.

Training

Data

TP53

ROC

TP53

PR

PTEN

ROC

PTEN

PR

BRCA1

ROC

BRCA1

PR

MSH2

ROC

MSH2

PR

Original 0.87 0.71 0.87 0.55 0.83 0.71 0.86 0.33

MSA

Trans-

former

0.9 0.76 0.88 0.52 0.83 0.72 0.87 0.36

The table above shows that the MSA Transformer data improved the ROC for 3 of the 4

types of diseases: TP53, PTEN and MSH2. For BRCA1, the ROC had the same ROC as the

Orignal Data. As for Precision-Recall, the MSA Transformer data improved 3 of 4 types of

diseases: TP53, BRCA1 and MSH2. However, the Precision-Recall score reduced for PTEN

compared to the score for the Original Data.

One possible flaw in this research may require to again try this experiment by rerunning the

Original Data. When I ran the Original Data to train the gMVP Model the ROC and PR scores

were lower than the scores in the published gMVP article. For example, in the gMVP article,

the ROC for TP53, is 0.88 while this research’s results for the Original Data scored 0.87. (See

Zhang and et al ((2022)) at 6). Also, in the gMVP article, the Precision-Recall scores are as

follows: 0.85 (TP53), 0.78 (PTEN), 0.81 (BRCA1), and 0.39 (MSH2), respectively. (See Zhang

and et al ((2022)) at 7). These results for the Original Data are higher than the results this

research obtained using the Original Data.

This research shows that using MSA Transformer Data to train the gMVP Model improves

the model compared to the Original Data that trained it. Possibly combining the Original Data

and combining it with the MSA Transformer Data could make the gMVP Model work even

better.
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